major lazer

miércoles, 2 de diciembre de 2015

INDUCCION MATEMATICA

INDUCCION MATEMATICA


INDUCCIÓN MATEMÁTICA El principio de Inducción Matemática es un método que se utiliza para demostrar propiedades, formulas, validarlas y probar que son verdaderas. Es un método simple que consta de tres pasos fundamentales en los cuales se debe demostrar la propiedad reemplazando su incógnita por 1, luego por k y finalmente por k+1. Los pasos para desarrollar la Inducción Matemática se detallan en el contenido del presente trabajo de investigación.El principio de Inducción Matemática es un método que se utiliza para demostrar propiedades, formulas, validarlas y probar que son verdaderas. Es un método simple que consta de tres pasos fundamentales en los cuales se debe demostrar la propiedad reemplazando su incógnita por 1, luego por k y finalmente por k+1. Los pasos para desarrollar la Inducción Matemática se detallan en el contenido del presente trabajo de investigación.
 INDUCCION MATEMATICA
Sea P(n) una proposición que depende de la variable n, con n perteneciente a los Naturales. Si:
1 satisface a P y,
k pertenece a los Naturales, k satisface P! (k+1) satisface P,
entonces todos los números naturales satisfacen P.
Usaremos el Axioma de Inducción Matemática para demostrar la validez, en los Números Naturales, de ciertas proposiciones P que depende de una variable n, con n perteneciente a los Naturales.
Procederemos de la siguiente manera:
Verificaremos la proposición para el numero 1.
Supondremos que la proposición es verdadera para un numero natural cualquiera k. (Hipótesis de inducción).
Demostraremos la proposición para el numero natural (k+1).
Así, gracias al axioma de inducción Matemática, podemos concluir que la proposición la satisfacen todos los números naturales.
Ejemplo 1:
Demostraremos que:
1+2+3+............+n = n(n+1), " n perteneciente a los naturales (*)
2
1= 1(1+1). Por lo tanto 1 satisface la proposición (*)
2
Supongamos valida la proposición (*) para k perteneciente a los Naturales, es decir supongamos que:
1+2+3+.........+k = k(k+1). (Hipótesis de inducción).
2
Demostremos que k - 1 también satisface la proposición (*), es decir, demostremos que:
1+2+3+.........+k+(k+1) = (k+1)(k+2).
2
Demostración:
(1+2+3+.......+k)+(k+1) = k(k+1) + (k+1)
2
= k(k+1)+2(k+1)
2
= (k+1)(k+2)
2
Luego la proposición (*) es verdadera "n perteneciente a los naturales.
En resumen, primero demuestras reemplazando el n por un 1, luego demuestras reemplazando el n por un k y finalmente lo demuestras reem
plazando el n por (k+1)

No hay comentarios.:

Publicar un comentario